Ответ: [tex]q<0, \\
b\cdot bq\cdot bq^2=125, \\
b^3q^3=125, \\
(bq)^3=5^3, \\
bq=5, \\ q= \frac{5}{b}, \\
S_3= \frac{b(1-q^3)}{1-q}=\frac{b(1-q)(1+q+q^2)}{1-q}=b(1+q+q^2), \\
S(q)=\frac{5(1+q+q^2)}{q}, \\
S'(q)=5\cdot \frac{(1+q+q^2)’\cdot q-(1+q+q^2)\cdot q’}{q^2} = 5\cdot \frac{(1+2q)\cdot q-(1+q+q^2)}{q^2} = \\ = 5\cdot \frac{(1+2q)\cdot q-(1+q+q^2)}{q^2} = 5\cdot \frac{q+2q^2-1-q-q^2}{q^2} =\frac{5(q^2-1)}{q^2}, \\[/tex][tex]S'(q)=0, \frac{5(q^2-1)}{q^2}=0, \\ q^2-1=0, \\ (q+1)(q-1)=0, \\ q+1=0, q_1=-1, \\ q-1=0, q_2=1>0, \\ q<-1, S'(q)>0, S(q)earrow, \\ -1<q<1, S'(q)<0, S(q)\searrow, \\ S(-1)= \frac{5(1-1+(-1)^2)}{-1} = -5.[/tex]

Источник znanija.site