Ответ: существует равнобедренный ∆,с углом при основании 34°,т.к углы при основании равнобед.∆=,значит сумма углов при основании= 68°,а сумма всех углов∆=180°,значит третий угол в ∆=180-68=112°. Другие варианты не подходят, т.к не соответствуют теореме: сумма углов ∆=180°,и они в сумме дают больше180°,а этого быть не может(например для 1) если один угол при основании=94°,значит и второй угол при основании =94°,т.к углы при основании в равнобедреном треугольнике=,значит 94+94=188,а этого уже не может быть,т.к в ∆ есть еще и третий угол,а в сумме все три угла должны равняться 180°,а у тебя только два в сумме дали 188,это противоречит теореме,а значит такой ∆ не существует,для 2) и 3)-такое же доказательство)