Ответ:
1. Объем прямоугольного параллелепипеда находят по формуле V = Sосн * h, где Sосн — это площадь основания, h – высота. В основании параллелепипеда — квадрат. Чтобы найти его площадь, необходимо найти его сторону. Диагональ квадрата, высота и диагональ параллелепипеда образуют прямоугольный треугольник, в котором известен один из катетов (h) и противолежащий ему угол (45º). Найдем диагональ квадрата:
d = h * sin ά = 8 * sin 45º = 8√2 (см).
2. По теореме Пифагора найдем сторону квадрата (а):
2а2 = (8√2)2;
а = √(64 * 2 / 2) = 8 (см).
3. Найдем объем:
V = а2 * h = 64 * 8 = 512 (см3).
Ответ: объем параллелепипеда 512 см3.