Ответ:

Имеем три члена геометрической прогрессии.

bn = b1 * q^(n — 1);

b2 = b1 * q;

b3 = b1 * q^2;

b1 + b1 * q + b1 * q^2 = 14;

b1 * (1 + q + q^2) = 14;

b1 * q^2 + 5 — b1 * q — 11 = b1 * q + 11 — b1 + 15;

b1 * q^2 — 2 * b1 * q + b1 = 32;

b1 * (q^2 — 2 * q + 1) = 32;

32/(q^2 — 2 * q + 1) = 14/(q^2 + q + 1);

32 * (q^2 + q + 1) = 14 * (q^2 — 2 * q + 1);

32 * q^2 + 32 * q + 32 — 14 * q^2 + 28 * q — 14 = 0;

18 * q^2 + 60 * q + 18 = 0;

3 * q^2 + 10 * q + 3 = 0;

D = 100 — 4 * 9 = 64;

q1 = (-10 — 8)/6 = -3;

q2 = (-10 + 8)/6 = -1/3;

1) b1 = 14/(9 — 3 + 1) = 2;

b2 = -6;

b3 = 18;

2) b1 = 14/(7/9) = 14 * 9/7 = 18;

b2 = -6;

b3 = 2.