Ответ: [tex]6cos2x+8=7sin2x-8\, cos^2x\\\\\star \; \; cos^2x=\frac{1+cos2x}{2}\; \; \star \\\\6cos2x+8=7sin2x-4(1+cos2x)\\\\6cos2x+8=7sin2x-4-4cos2x\\\\10cos2x-7sin2x=-12\\\\10\cdot (cos^2x-sin^2x)-7\cdot 2\, sinx\cdot cosx=-12\cdot (sin^2x+cos^2x)\\\\22cos^2x+2sin^2x-14sinx\cdot cosx=0\; |:2cos^2xe 0\\\\tg^2x-7tgx+11=0\; ,\; t^2-7t+11=0\; ,\; D/4=38\; ,\; t_{1,2}=7\pm \sqrt{38}\\\\tgx=7-\sqrt{38}\; ,\; \; \underline {x=arctg(7-\sqrt{38})+\pi n,\; n\in Z}\\\\tgx=7+\sqrt{38}\; ,\; \; \underline {x=arctg(7+\sqrt{38})+\pi k,\; k\in Z} [/tex]