Ответ:
2cos(x-3π/2)*cos(2π-x)=√3*sin(x)
2cos(3π/2-x)*cos(-x)=√3*sin(x)
2*(-sin(x))*cos(x)=√3*sin(x)
sin(x)*cos(x)=-√3/2 sin(x)
sin(x)=0 или cos(x)=-√3/2
x=πn, n∈Z x=±(5π/6)+2πk, k∈Z
Отрезку [-π; π/2] принадлежат корни -π; -5π/6; 0.
Ответ:
2cos(x-3π/2)*cos(2π-x)=√3*sin(x)
2cos(3π/2-x)*cos(-x)=√3*sin(x)
2*(-sin(x))*cos(x)=√3*sin(x)
sin(x)*cos(x)=-√3/2 sin(x)
sin(x)=0 или cos(x)=-√3/2
x=πn, n∈Z x=±(5π/6)+2πk, k∈Z
Отрезку [-π; π/2] принадлежат корни -π; -5π/6; 0.