Ответ:

АВСД — равноб. трап. АВ=СД=5, АД = 6, ВС = 4. Поведем высоты ВК и СЕ. Очевидно, что АК = ЕД = (6-4)/2 = 1. По т. Пифагора высота СЕ = корень(25-1) = кор из 24. Теперь из прям. треуг. АСЕ АС = кор(АЕ квад + СЕ квад) = кор(25 + 24) = 7.

 Ответ : АС=ВД=7 см.

Ответ:

начерти трапецию, обозначь ее АВСД, где АВ-верхнее основание, СД-нижнее,

Проведи из угла  угла А высоту  АО

Найдем АО, АО^2=ДА^2- ((СД-АВ)/2)^2=5^2-((6-4)/2^2=24

АО=2V6 cм

теперь найдем диагональ АС

АС^2=АО^2+ОС^2

ОС=6-(6-4)/2=5

АС^2=(2V6)^2+5^2=4*6+25=49

АС=7 см — диагональ ( в равнобокой трапеции диагонали равны)