Ответ:

Это практически устная задача. Надо знать несколько простых вещей.

1. Отрезок ,соединяющий середины диагоналей, равен полуразности оснований. 

Ясно, что этот отрезок — часть средней линии, заключенная между диагоналями. Куски средней линии между боковой стороной и диагональю (все равно с какой стороны) равны половине малого основания — как средние линии (в обозначениях задачи это средние линии треугольников KLM и NLM). Если обозначить основания как a и b, то 

12 = (a + b)/2 — 2*(b/2) = (a — b)/2;

Кроме того, задано, что (a + b)/2 = 24; 

Отсюда легко находим a = 36, b = 12;

Рассмотрим теперь подобные треугольники KAN и LAM. LN/KN = 12/36 = 1/3;

Поэтому AL/AK = AM/AN = 1/3; Но AK — AL = 10; AN — AM = 26, отсюда сразу находим AL = 5, АМ = 13.

Вот тут нам Пифагор здорово облегчает жизнь — получился треугольник со сторонами (5,12,13), то есть прямоугольный. По известной формуле радиус вписанной в прямоугольный треугольник окружности равен

r = (5 + 12 — 13)/2 = 2. Это ответ.

 

Кстати, эта формула получается очень просто, поскольку отрезки касательных к вписанной окружности, из которых складываются стороны, включают и сам радиус r.

И, между прочим, в задаче с самого начала задана прямоугольная трапеция.