Ответ: Дано: треугольник АВС; AД — биссектриса AO = OД MO перпендикулярно AД Доказать: что AВ параллельно MД Доказательство: 1) Рассмотрим треугольники АОМ и ОМД. У них сторона МО — общая, АО = ОД по условию задачи, угол ДОМ = углу АОМ = 90 градусов так, как MO перпендикулярно AД. Следовательно треугольники АОМ = ОМД; 2) Тогда угол МДО = углу ОМА = углу ВАД так, как AД — биссектриса; 3) Углы МДО и АВД — накрест лежащие для прямых МД и АВ и секущей АД. Так, как угол МДО = углу ВАД, то прямые МД и АВ параллельны. Доказано.