Ответ:
Обозначим меньшее основание через AB, большее через DC, тогда угол BCD = 30, ADC = DAB = 90 по условию задачи.
ABC + DCB = 180;
ABC = 180 — 30 = 150;
Поскольку DB — биссектриса:
ABD = 1/2 * ABC = 150 / 2 = 75.
Тогда:
AD = AB * tg(ABD) = 12 * sin(75).
Рассмотрим треугольник DBC. По теореме синусов получим:
DC / sin(DBC) = BC / sin(BCD);
BC = DC * sin(BCD) / sin(DBC) = 18 * 1/2 * sin(75) = 9 / sin(75).
Периметр равен:
12 + 18 + 12 * sin(75) + 9 / sin(75) = 20 + 12 * sin(75) + 9 / sin(75).