Ответ:
Опустим из тупого угла трапеции высоту на большее основание.
Получим прямоугольный треугольник с гипотенузой = диагонали трапеции, один из острых углов которого 30° из условия задачи.
Высота, как катет, противолежащий углу 30°, равна половине диагонали и равна 2 см Боковая сторона равна 2√2, отсюда отрезок, который высота отрезала от большего основания, равен 2 см, так как боковая сторона равна диагонали квадрата со стороной 2 см (по формуле диагонали квадрата а√2) . Так как образовался равнобедренный прямоугольный треугольник, острые углы в нем 45°, и поэтому второй угол при большем основании равен 45°. Отсюда тупой угол при меньшем основании равен180-45=135°.