Ответ:
Известно, что sin a = √3/2.
Применим формулы половинных углов.
cos a = 1 — 2 * sin² (a/2);
Найдем cos a.
cos a = 1 — 2 * (√3/2)² = 1 — 2 * √3²/2² = 1 — 2 * √9/4 = 1 — 2 * 3/4 = 1 — 6/4 = 1 — 3/2 = 2/2 — 3/2 = -1/2;
Найдем cos (a/2).
cos (a/2) = +-√((1 + cos a)/2) = +-√((1 — 1/2)/2) = +-√((1/2)/2) = +-√(1/2 * 1/2) = +-√(1/4) = +-1/2;
sin (a/2) = +-√((1 — cos a)/2) = +-√((1 + 1/2)/2) = +-√((3/2)/2) = +-√(3/2 * 1/2) = +-√(3/4) = +-√3/2;
Найдем tg (a/2).
tg (a/2) = +-sin (a/2)/cos (a/2) = +-(√3/2)/(1/2) = +-√3/2 * 2/1 = +-√3.