Ответ:

Пусть у нас дана геометрическая прогрессия b(n): b1,b2…

Воспользуемся формулой для расчёта суммы n-первых членов геометрической прогрессии:

 

S(5) = b1(q⁵-1) / (q-1)

S(3) = b1(q³ — 1) / (q — 1)

По условию, S(5) — S(3) = 1.5, то есть

 

b1(q⁵-1) / (q-1)  —  b1(q³ — 1) / (q — 1) = (b1(q⁵-1) — b1(q³ — 1)) / (q-1) = b1(q⁵-1 — q³ + 1) / (q-1) = b1(q⁵ — q³) / (q-1) = 1.5

 

Теперь перейдём к другому условию. Выразим пятый и третий член через первый и знаменатель:

 

b3 = b1q²

b5 = b1q⁴

b5 = 4b3

b1q⁴ = 4b1q²

Таким образом, приходим к системе:

 

b1(q⁵ — q³) / (q-1) = 1.5

b1q⁴ = 4b1q²

Если нам удасться выкрутить данную систему, то получим первый член и знменатель, а там уже и до четвёртого члена недалеко.

 

Второе уравнение можно сократить на b1, получим:

 

q⁴ = 4q²

Теперь сокращаем на q²:

q² = 4

Отсюда q = 2   или    q = -2. Но знаменатель по условию положителен, поэтому q = 2.

Теперь решить систему достаточно нетрудно. Подставим вместо q число 2.

 

b1(2⁵ — 2³) / (2 — 1) = 1.5

b1(2⁵ — 2³)  = 1.5

b1 = 1.5 / 24 = 0.0625

 Теперь мы знаем знаменатель и первый член. Очень легко теперь ищется четвёртый:

 

b4 = b1q³

b4 = 0.0625 * 8 = 0.5

Задача выполнена. Проверить, насколько верно она решена, я не в состоянии, скорее всего так, никак иначе.